Abstract
The purpose of this work was to investigate disease progression and treatment response in a murine model of chronic obstructive pulmonary disease (COPD) using a preclinical hyperpolarized 129 Xe (HPXe) magnetic resonance imaging (MRI) strategy. COPD phenotypes were induced in 32 mice by 10 weeks of exposure to cigarette smoke (CS) and lipopolysaccharide (LPS). Efficacy of ethyl pyruvate (EP), an anti-inflammatory drug, was investigated by administering EP to 16 of the 32 mice after 6 weeks of CS and LPS exposure. HPXe MRI was performed to monitor changes in pulmonary function during disease progression and pharmacological therapy. HPXe metrics of fractional ventilation and gas-exchange function were significantly reduced after 6 weeks of CS and LPS exposure compared to sham-instilled mice administered with saline (P < 0.05). After this observation, EP administration was started in 16 of the 32 mice and continued for 4 weeks. EP was found to improve HPXe MRI metrics to a similar level as in sham-instilled mice (P < 0.01). Histological analysis showed significant alveolar tissue destruction in the COPD group, but relatively normal alveolar structure in the EP and sham-instilled groups. This study demonstrates the potential efficacy of EP for COPD therapy, as assessed by a noninvasive, translatable 129 Xe MRI procedure. Magn Reson Med 78:721-729, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.