Abstract

Interstitial photodynamic therapy (PDT) has seen a rebirth, partially prompted by the development of photosensitizers with longer absorption wavelengths that enable the treatment of larger tissue volumes. Here, we study whether using diffusers with customizable longitudinal emission profiles, rather than conventional ones with flat emission profiles, improves our ability to conform the light dose to the prostate. We present a modified Cimmino linear feasibility algorithm to solve the treatment planning problem, which improves upon previous algorithms by (1) correctly minimizing the cost function that penalizes deviations from the prescribed light dose, and (2) regularizing the inverse problem. Based on this algorithm, treatment plans were obtained under a variety of light delivery scenarios using 5–15 standard or tailored diffusers. The sensitivity of the resulting light dose distributions to uncertainties in the optical properties, and the placement of diffusers was also studied. We find that tailored diffusers only marginally outperform conventional ones in terms of prostate coverage and rectal sparing. Furthermore, it is shown that small perturbations in optical properties can lead to large changes in the light dose distribution, but that those changes can be largely corrected with a simple light dose re-normalization. Finally, we find that prostate coverage is only minimally affected by small changes in diffuser placement. Our results suggest that prostate PDT is not likely to benefit from the use of tailored diffusers. Other locations with more complex geometries might see a better improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call