Abstract

Background and purposeMRI-guided online adaptive treatments can account for interfractional variations, however intrafraction motion reduces treatment accuracy. Intrafraction plan adaptation methods, such as the Intrafraction Drift Correction (IDC) or sub-fractionation, are needed. IDC uses real-time automatic monitoring of the tumor position to initiate plan adaptations by repositioning segments. IDC is a fast adaptation method that occurs only when necessary and this method could enable margin reduction. This research provides a treatment planning evaluation and experimental validation of the IDC. Materials and methodsAn in silico treatment planning evaluation was performed for 13 prostate patients mid-treatment without and with intrafraction plan adaptation (IDC and sub-fractionation). The adaptation methods were evaluated using dose volume histogram (DVH) metrics. To experimentally verify IDC a treatment was mimicked whereby a motion phantom containing an EBT3 film moved mid-treatment, followed by repositioning of segments. In addition, the delivered treatment was irradiated on a diode array phantom for plan quality assurance purposes. ResultsThe planning study showed benefits for using intrafraction adaptation methods relative to no adaptation, where the IDC and sub-fractionation showed consistently improved target coverage with median target coverages of 100.0%. The experimental results verified the IDC with high minimum gamma passing rates of 99.1% and small mean dose deviations of maximum 0.3%. ConclusionThe straightforward and fast IDC technique showed DVH metrics consistent with the sub-fractionation method using segment weight re-optimization for prostate patients. The dosimetric and geometric accuracy was shown for a full IDC workflow using film and diode array dosimetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call