Abstract

The aim of this study is to provide a practical approach to the planning technique and evaluation of plan quality for the multi-lesion, single-isocenter stereotactic ablative radiotherapy (SABR) of the lung. Eleven patients with two or more lung lesions underwent single-isocenter volumetric-modulated arc therapy (VMAT) radiosurgery or IMRS. All plans were normalized to the target maximum dose. For each plan, all targets were treated to the same dose. Plan conformity and dose gradient were maximized with dose-control tuning structures surrounding targets. For comparison, multi-isocenter plans were retrospectively created for four patients. Conformity index (CI), homogeneity index (HI), gradient index (GI), and gradient distance (GD) were calculated for each plan. V5, V10, and V20 of the lung and organs at risk (OARs) were collected. Treatment time and total monitor units (MUs) were also recorded. One patient had four lesions and the remainder had two lesions. Six patients received VMAT and five patients received intensity-modulated radiosurgery (IMRS). For those treated with VMAT, two patients received 3-arc VMAT and four received 2-arc VMAT. For those treated with IMRS, two patients were treated with 10 and 11 beams, respectively, and the rest received 12 beams. Prescription doses ranged from 30 to 54 Gy in three to five fractions. The median prescribed isodose line was 84% (range: 80–86%). The median maximum dose was 57.1 Gy (range: 35.7–65.1 Gy). The mean combined PTV was 49.57 cm3 (range: 14.90–87.38 cm3). For single-isocenter plans, the median CI was 1.15 (range: 0.97–1.53). The median HI was 1.19 (range: 1.16–1.28). The median GI was 4.60 (range: 4.16–7.37). The median maximum radiation dose (Dmax) to total lung was 55.6 Gy (range: 35.7–62.0 Gy). The median mean radiation dose to the lung (Dmean) was 4.2 Gy (range: 1.1–9.3 Gy). The median lung V5 was 18.7% (range: 3.8–41.3%). There was no significant difference in CI, HI, GI, GD, V5, V10, and V20 (lung, heart, trachea, esophagus, and spinal cord) between single-isocenter and multi-isocenter plans. This multi-lesion, single-isocenter lung SABR planning technique demonstrated excellent plan quality and clinical efficiency and is recommended for radiosurgical treatment of two or more lung targets for well-suited patients.

Highlights

  • Stereotactic ablative radiotherapy (SABR) has been shown to be effective in treating inoperable patients with primary or metastatic lung lesions [1, 2]

  • Patient Characteristics From January 2011 to September 2014, 11 patients with multiple primary or oligometastatic lung lesions were treated with a frameless single-isocenter volumetric-modulated arc therapy (VMAT) or intensity-modulated radiosurgery (IMRS) radiosurgery technique

  • We presented a systematic framework for the creation of single-isocenter VMAT or IMRS plans for the treatment of multiple lung lesions

Read more

Summary

Introduction

Stereotactic ablative radiotherapy (SABR) has been shown to be effective in treating inoperable patients with primary or metastatic lung lesions [1, 2]. Volumetric-modulated arc therapy (VMAT) and intensity-modulated radiosurgery (IMRS) have been established as treatment techniques for delivering SABR to the lung [5,6,7,8,9,10,11,12,13,14] They provide optimal dose distributions and precise targeting with excellent treatment delivery efficiency. We hypothesize that SABR delivered with single-isocenter VMAT (RapidArc, Varian Medical Systems, Palo Alto, CA, USA) or IMRS (TrueBeam STx linear accelerator, Varian Medical Systems, Palo, Alto, CA, USA) is a feasible treatment technique for multi-target primary or oligometastatic lung nodules. This technique could potentially save treatment time and make treatment planning more convenient

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.