Abstract

This research focused on developing a modified chemical precipitation (MCP) method for treating wet flue gas desulfurization (FGD) waste water by adding a solid powder reagent directly. Simulated wet FGD wastewater was treated by MCP method in simulation experiments. Optimization experiments were carried out with the help of response surface methodology (RSM) and central composite design (CCD) to evaluate the effects and the interactions of experimental variables, including reagent dosage, temperature and pH value. The optimal reagent dosage, temperature and pH value were 3018.0 mg/L, 40.5 °C and 5.7, respectively. The RSM was demonstrated as an appropriate approach for the optimization of wet FGD wastewater treatment with the MCP method. A comparative study between the MCP method and the traditional chemical precipitation (TCP) method on raw wet FGD wastewater treatment was conducted. Results indicate that the MCP had less reagent dosage and variety than the TCP method had. Thus, the MCP method had a lower cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.