Abstract
Direct contact membrane distillation technology was considered as a promising and efficient technology for the treatment of textile wastewater. In this study, hydrophobic polytetrafluoroethylene and polyvinylidene fluoride membranes for the treatment of selected model compounds of textile wastewater (e.g., phenol, aniline, and sulfanilic acid) were explored comparatively in a bench-scale direct contact membrane distillation technology test unit. The effect of various operational parameters including temperature, flow rate, and concentration on the rejection performance was investigated systematically. The results indicated that an increased feed temperature and a faster cross flow velocity contributed positively to the direct contact membrane distillation performance. Limited rejection for phenol and aniline was witnessed, which can be due to their relatively lower boiling point. A > 99% of sulfanilic acid rejection was obtained under the same conditions. Furthermore, the polytetrafluoroethylene membrane always presented enhanced performance compared with the polyvinylidene fluoride samples. In brief, the direct contact membrane distillation process could be potentially used as a promising technique for the treatment of textile wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.