Abstract

Type 2 Diabetes Mellitus (T2DM) accounts for more than 90% of total diabetes mellitus cases all over the world. Obesity and lack of balance between energy intake and energy expenditure are closely linked to T2DM. Initial pharmaceutical treatment and lifestyle interventions can at times lead to remission but usually help alleviate it to a certain extent and the condition remains, thus, recurrent with the patient being permanently pharmaco-dependent. Mesenchymal stromal cells (MSCs) are multipotent, self-renewing cells with the ability to secrete a variety of biological factors that can help restore and repair injured tissues. MSC-derived exosomes possess these properties of the original stem cells and are potentially able to confer superior effects due to advanced cell-to-cell signaling and the presence of stem cell-specific miRNAs. On the other hand, the repository of antidiabetic agents is constantly updated with novel T2DM disease-modifying drugs, with higher efficacy and increasingly convenient delivery protocols. Delving deeply, this review details the latest progress and ongoing studies related to the amalgamation of stem cells and antidiabetic drugs, establishing how this harmonized approach can exert superior effects in the management and potential reversal of T2DM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.