Abstract

This study examines the feasibility of treatment of textile industry wastewater using a two-step process that includes coagulation-flocculation aided sedimentation and adsorption. It also aims at finding reuse potential of the generated sludge while making the treated water recyclable for the same industry in an industrial ecology concept. The wastewater was collected from a small-scale textile plant with a discharge of 400 L/week, where more than 70 similar textile plants are located in and around the area. FeCl3 was selected as the coagulant for the initial step in the treatment process, and a bimetallic oxide Graphene Oxide (GO) hybrid was selected as the adsorbent for the latter step of the treatment process. The experimental conditions for the coagulation process included the optimization of dose, stirring speed, stirring time, and settling time. For the adsorption process it included the optimization of stirring time, dose, and rate. The parameters like Chemical Oxygen Demand (COD) and color were checked during the treatment process and near complete removal of COD and color were achieved using the suggested materials and process. The treated water was found fit for recycling - towards making zero liquid discharge plant. Later, the sludge generated from both the steps in the processes was sundried and mixed with cement and tested for 7 days and 28 days of compressive strength. A total of 26 kg of cement was replaced, by using sludge generated from treating 100 L of textile wastewater, in the sludge-cement mix. In addition to solving the sludge problem, the process can help in reducing the requirement of cement in concrete. Finally, a detailed economic assessment for the entire study was also performed and is reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call