Abstract

Spinal cord injury results in the loss of sensory, motor, and autonomic functions, which almost always produces permanent physical disability. Thus, in the search for more effective treatments than those already applied for years, which are not entirely efficient, researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach, seeking to promote neuronal recovery after spinal cord injury. Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and, consequently, boosting functional recovery. Although the majority of experimental research has been conducted in rodents, there is increasing recognition of the importance, and need, of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans. This article is a literature review from databases (PubMed, Science Direct, Elsevier, Scielo, Redalyc, Cochrane, and NCBI) from 10 years ago to date, using keywords (spinal cord injury, cell therapy, non-human primates, humans, and bioengineering in spinal cord injury). From 110 retrieved articles, after two selection rounds based on inclusion and exclusion criteria, 21 articles were analyzed. Thus, this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans, aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.