Abstract
Solid waste production is rapidly increasing, and municipal solid waste incinerator plants provide a practical and sustainable solution to significantly reduce the volume of waste. Incinerator ash is a byproduct of the combustion process, and lightweight sands can be reclaimed from the ash for use in cementitious materials once treated for hydrogen gas production. This work investigates treatment methods for reclaimed sands for use in concrete. A novel method based on a propriety patent to capture the amount of hydrogen gas production from reclaimed sands is presented using a steel pressure chamber, pressure transducer, and data acquisition system. The setup is maintained under a constant temperature, pressure, and agitation using an environmental incubator. Treatment methods using sodium hydroxide, reused sodium hydroxide, alumina, and alumina + sodium hydroxide are investigated. It is found that sodium hydroxide is an effective treatment solution for reclaimed sands, with the ability to reuse the solution multiple times. Alumina is found not to be an effective treatment method when used alone. Concrete is made using treated reclaimed sands, where it is shown through scanning electron microscopy imaging that large voids in the cement matrix due to hydrogen gas production are significantly reduced in size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.