Abstract

This paper deals with the electrocoagulation of real wastewater produced from a car wash station using a new cell design featuring a horizontal spiral anode placed above a horizontal disc cathode. The study dealt with the chemical oxygen demand (COD) reduction and turbidity removal using electrodes in a batch mode. Various operating parameters such as current density, initial pH, NaCl concentration, temperature, and electrode material were examined to optimize the performance of the process. Also, characterization of sludge formed during electrocoagulation was carried out. The results indicated that the COD reduction and turbidity removal increase with increasing the current density and NaCl concentration; pH from 7 to 8 was found to be optimum for treating the wastewater. Temperature was found to have an insignificant effect on the process. Aluminum was superior to iron as a sacrificial electrode material in treating car wash wastewater. Energy consumption based on COD reduction ranged from 2.32 to 15.1kWh/kg COD removed depending on the operating conditions. Finally, the sludge produced during electrocoagulation using aluminum electrodes was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call