Abstract

Summary Significant advances have been made in the development of analytical models for performing rate-transient analysis (RTA) for single-phase oil and gas reservoirs. The primary complication associated with the adaptation of these solutions to wells exhibiting multiphase flow is the single-phase assumption in the development of the material-balance time function. Despite some efforts in modifying existing dry-gas formulations for use with gas/condensate reservoirs, that approach is not practical for analyzing multiphase flow from oil wells with multiphase-flow characteristics. In this work, we present a simple yet semianalytical model that provides a solution for analyzing production data from wells exhibiting multiphase flow during boundary-dominated flow periods. The solution is obtained by combining the material-balance equation and the productivity index (PI) for all flowing phases. Appropriately defined total pseudopressure and total pseudotime are introduced to handle the associated multiphase nonlinearities in the governing flow equations of oil, gas, and water phases simultaneously. A generalized flowing-material-balance (FMB) equation is derived from the total pseudovariables to estimate original fluid in place and drainage area (given volumetric input). The presented model provides a theoretical framework for analyzing production data considering a wide variety of reservoir-fluid systems. The new method is validated against numerical simulation, covering a wide range of fluid properties and operating conditions. In all simulated cases, the new method matches simulation input acceptably. Two field examples are also analyzed to demonstrate the practical applicability of this approach. This work serves as a practical and simple engineering tool for production-data analysis on wells exhibiting single and multiphase flow during boundary-dominated flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call