Abstract

BackgroundTo potentially improve impaired vasomotion of patients with multiple organ dysfunction syndrome (MODS), we tested whether an electromagnetic field of low flux density coupled with a biorhythmically defined impulse configuration (Physical Vascular Therapy BEMER®, PVT), in addition to standard care, is safe and feasible and might improve disturbed microcirculatory blood flow and thereby improve global haemodynamics.MethodsIn a prospective, monocentric, one-arm pilot study, 10 MODS patients (APACHE II score 20–35) were included. Patients were treated, in addition to standard care, for 4 days with PVT (3 treatment periods of 8 min each day; day 1: field intensity 10.5 μT; day 2:14 μT, day 3:17.5 μT; day 4:21.0 μT). Primary endpoint was the effect of PVT on sublingual microcirculatory perfusion, documented by microvascular flow index (MFI). Patient safety, adverse events, and outcomes were documented.ResultsAn increase in MFI by approximately 25% paralleled 4-day PVT, with the increase starting immediately after the first PVT and lasting over the total 4-day treatment period. Concerning global haemodynamics (secondary endpoints), halving vasopressor use within 24 h, and haemodynamic stabilisation paralleled 4-day PVT with an increase in cardiac index, stroke volume index, and cardiac power index by 30%–50%. No adverse events (AEs) or serious adverse events (SAEs) were classified as causally related to the medical product (PVT) or study. Three patients died within 28 days and one patient between 28 and 180 days.ConclusionPVT treatment was feasible and safe and could be performed without obstruction of standard patient care. An increase in microcirculatory blood flow, a rapid reduction in vasopressor use, and an improvement in global haemodynamics paralleled PVT treatment. Findings of this pilot study allowed forming a concept for a randomized trial for further proof.Graphical abstract

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.