Abstract
Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3–N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40 mL/g compared to 150 mL/g for seed sludge), higher settling velocity (47 m/h compared to 10 m/h for seed sludge) and sludge aggregates (0.7 mm aggregates compared to <0.2 mm for seed sludge) was observed. The results demonstrate the potential of waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.