Abstract

A method is proposed for the treatment of irregular bathymetry in one-dimensional finite volume computations of open-channel flow. The strategy adopted is based on a reformulation of the Saint-Venant equations. In contrast with the usual treatment of topography effects as source terms, the method accounts for slope and nonprismaticity by modifying the momentum flux. This makes it possible to precisely balance the hydrostatic pressure contributions associated with variations in valley geometry. The characteristic method is applied to the revised equations, yielding topographic corrections to the numerical fluxes of an upwind scheme. Further adaptations endow the scheme with an ability to capture transcritical sections and wetting fronts in channels of abrupt topography. To test the approach, the scheme is first applied to idealized benchmark problems. The method is then used to route a severe flood through a complex river system: the Tanshui in Northern Taiwan. Computational results compare favorably with gauge records. Discrepancies in water stage represent no more than a fraction of the magnitude of typical bathymetry variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.