Abstract

Dye containing wastewater has increasingly become an important contamination due to operation of various industries such as textile industry. In this study, a micro-scale biochar particles/polysulfone mixed matrix hollow fiber membrane (MMM) was applied for the removal of methylene blue from water. The static and dynamic adsorption performance was investigated. We found that the MMM exhibited a high removal efficiency of methylene blue under a wide pH range of 4–10. The adsorption process on biochar and MMM obeyed the intraparticle surface diffusion model and Langmuir isotherm model. At neutral pH, the maximum adsorption capacity was 544.459 mg/g for biochar and 165.808 mg/g for MMM. Better regeneration with a desorption rate above 92% was achieved by 1-M NaCl in 90% ethanol aqueous solution. Furthermore, the MMM displayed good performance in treating methylene blue containing wastewater through a continuous filtration mode. More importantly, the MMM showed an excellent reusability for methylene blue removal; it was able to achieve 81% of the permeate yield of the fresh MMM after three regeneration cycles. Finally, the adsorption mechanism studies indicated that the removal of methylene blue was associated with electrostatic interaction, hydrogen bonding and hydrophobic interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.