Abstract

In this examination, sub/supercritical water oxidation (SCWO) in a batch reactor was employed to degrade methyldiethanolamine (MDEA). To do so, the impact of different operating parameters including temperature (300-500°C), time (0-100s), initial MDEA concentration (1000-4000ppm), oxidant coefficient (0.7-2), and pH (7.3-9.5) on MDEA degradation was separately and together investigated. Subsequently, the response surface method (RSM) was applied to optimize the operating condition of MDEA degradation. Based on the obtained results, a maximum amount of 97.4% MDEA degradation was achieved at the initial MDEA concentration of 1095ppm in optimal condition (i.e., oxidant coefficient: 1.913, temperature: 472°C and residence time: about 17s). Furthermore, according to the HPLC analysis, there was a negligible amounts of formic acid (CH2O2) and nitrous acid (HNO2) in the solution at the end of MDEA removal experiment. Eventually, the mechanism of MDEA degradation was acquired using molecular dynamics simulation (MDS), which had an acceptable coordination with the experimental results. In this way, the MDS results revealed that the presence of CH2O2 and HNO2 compounds in the products was related to the degradation of MDEA and their production as by-products during the SCWO experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call