Abstract
ABSTRACTA combined technology between Iron-carbon micro-electrolysis (ICME) and H2O2 using scrap iron and granular active carbon was extensively investigated and optimized (three main independent parameters chosen) for chemical oxygen demand (COD) removal of landfill leachate reverse osmosis (RO) concentration by batch experiments. A regression quadratic equation was developed to model the outcome using central composite design (CCD) coupled with response surface methodology. A global optimization method–the convex optimization was applied to determine the optimal parameters. Under optimal parameters determined as C/Fe (Surface area) of 717143.8, H2O2 concentration of 1687.6 mg/L and pH of 3.8, the corresponding COD removal efficiency was up to 86.9%. Consequently, the COD in the effluent was less than 300 mg/L. The treated water can meet the level B standards of Wastewater Quality Standards for Discharge to Municipal Sewers (CJ 343—2010).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.