Abstract

Complex organic matters and high concentrations of ammonia nitrogen in landfill leachate required deep treatment before discharge. In this study, a catalytic ozonation-membrane bioreactor (MBR) process equipped with MnNi composite loaded carbon felt catalysts (Mn-Ni@CF) was proposed for landfill leachate treatment. The mechanism of catalytic ozonation was analyzed in focus. The abundant valence of manganese and nickel loaded on Mn-Ni@CF could promote the electron transfer and form the Mn4+ - O2 - Ni2+ redox couples. The redox reactions occurred in bimetallic enhanced transformation of active sites and generation of OH and O2−. It was found that the removal of humic acid substances by Mn-Ni@CF catalysts achieved 85.5 % after 2 h of catalytic ozonation reaction. Coupling with MBR, the removal efficiencies of chemical oxygen demand (COD) and NH4+-N for 25 L of landfill leachate were 99.8 % and 91.4 % after 13 days of operation, respectively. Proteobacteria and Actinobacteriota were effective to promote the nitrification-denitrification reaction. Thauera and Truepera could degrade organic matter. This study provided a new strategy for the efficient treatment of landfill leachate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.