Abstract

This article presents the experimental work for the treatment of landfill leachate in a combined process using the white rot fungus Phanerochaete chrysosporium and the natural zeolite Clinoptilolite. Clinoptilolite was used in a pretreatment step as a sink for ammonia nitrogen and, on average it reduced the levels of ammonia nitrogen, soluble chemical oxygen demand (COD) and color by 72, 4.7, and 25%, respectively. The reductions by fungal treatment alone were 16.6, 21.5, and 31.2%, respectively. However, a reduction in nitrogen loading greatly enhanced fungal treatment efficiency. A high C/N ratio in the leachate was found preferable for the fungal treatment. With the synergy created by pretreatment and fungal growth that was stimulated by the addition of a growth medium, the process could remove ammonia nitrogen, soluble COD (SCOD) and color at levels as high as 81.5, 65, and 59%, respectively. The ratio of SBOD5/SCOD increased from 0.1 to 0.17 upon treatment, indicating that the process rendered the leachate more amenable to the biological process. This result suggested that the preliminary reduction of ammonia nitrogen was essential in making the fungal process practicable for landfill leachate treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.