Abstract

UV/NH2Cl process is becoming increasingly important for water treatment, while its impact on iodine-containing water remains unknown. In this study, the structure transformation of dissolved organic matters (DOMs), generation of iodinated trihalomethanes (I-THMs), and variation of acute toxicity were evaulated during the UV/NH2Cl treatment of iodine-containing water. The combination of exciation emission matrix-parallel factor analysis and two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy showed that fulvic-like fraction of DOM was more susceptible to UV/NH2Cl process and particularly iodo and polysaccharide groups gave the fastest resopnses. Consequently, UV fluence lower than 60 mJ/cm2 promoted the production of I-THMs, while excessive UV exhausted NH2Cl and reactive iodine species and subsequently reduced I-THM generation. Moreover, DOM concentration and source, NH2Cl dosage, and I− concentration had significant impacts on I-THM formation in the UV/NH2Cl process. Additionally, a positive correlation was found between acute toxicity variation and I-THM formation when treating iodine-containing waters with UV/NH2Cl. These results together provide a comprehensive understanding on UV/NH2Cl treatment of iodine-containing water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call