Abstract

BackgroundCystic Fibrosis (CF) is a genetic disease affecting multiple organs, primarily the lungs and digestive system. Improved pulmonary management significantly improved life expectancy of CF patients. As a result, extrapulmonary manifestations, including gastrointestinal and liver-related symptoms, have become more relevant. We previously reported that the osmotic laxative polyethylene glycol (PEG), which hydrates the CF gut, decreased fecal bile acid loss in a CF knockout mouse model. In the current study we investigated the effect of PEG on intestinal fat and cholesterol absorption and on CF-related liver features in a CF mouse model with the most common CF-causing mutation. MethodsCftrΔF508/ΔF508 (n=13) and wild-type (WT) (n=12) mice were treated with PEG for 2 weeks. The intestinal and hepatic effects of PEG were assessed by analysis of intestinal bile acid, cholesterol, and fat fluxes, transcriptome analysis as well as histology. ResultsPEG improved intestinal malabsorption of bile acids, fat, and cholesterol in CftrΔF508/ΔF508 mice. Transcriptome analysis showed that PEG partially restored the intestinal signaling of nuclear receptors RXR, FXR, and CAR/PXR, which are involved in bile acid and xenobiotic metabolism. PEG also reduced liver inflammation in CF mice as assessed by transcriptome and histological analyses. ConclusionsPEG, a non-absorbable osmotic laxative, improved intestinal nutrient absorption, intestinal bile acid and xenobiotic signaling, as well as CF-related liver features. These findings highlight the potential for osmotic laxation to improve gastrointestinal complications of CF in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call