Abstract

BackgroundOncolytic herpes simplex virus (HSV) can replicate in and kill cancer cells while sparing the adjacent normal tissue. Hepatocellular carcinoma (HCC) is amongst the most common and lethal cancers, especially in Third World countries. In this study, the cytotoxicity of a third-generation oncolytic HSV, G47Δ, was investigated in different human HCC cell lines and in an immortalized human hepatic cell line. Additionally, subcutaneous models of HCC were established to evaluate the in vivo anti-tumor efficacy of G47Δ.MethodsThe HepG2, HepB, SMMC-7721, BEL-7404, and BEL-7405 human HCC cell lines and the HL-7702 human hepatic immortalized cell lines were infected with G47Δ at different multiplicities of infection (MOIs). The viability of infected cells was determined, and the G47Δ replication was identified by X-gal staining for LacZ expression. Two subcutaneous (s.c.) HCC tumor models of HCC were also established in Balb/c nude mice, which were intratumorally(i.t.) treated with either G47Δ or mock virus. Tumor volume and mouse survival times were documented.ResultsMore than 95% of the HepG2, Hep3B,and SMMC-7721 HCC cells were killed on by day 5 after infection with a MOI’s of 0.01. For the HL-7702 human hepatic immortalized cells, 100% of the cells were killed on by day 5 after infection with a MOI’s of 0.01. The BEL-7404 HCC cell line was less susceptible with about 70% cells were killed by day 5 after infection with a MOI’s of 0.01. Whereas the BEL-7405 HCC cells were the least susceptible, with only 30% of the cells were killed. Both the SMMC-7721 and BEL-7404 cells form aggressive sc tumor models. G47Δ replicates in the tumors, such that most of the tumors regressed after the G47Δ-treatment, and treated tumor-bearing mice survived much longer than the control animals.ConclusionsG47Δ effectively kills human HCC cells and an immortalized hepatic cell line at low MOI. Intra-tumor injection of G47Δ can induce a therapeutic effect and prolong the survival of treated mice bearing SMMC-7721 and BEL-7404 subcutaneously (s.c.) tumors. Thus, G47Δ may be useful as a novel therapeutic agent for HCC.

Highlights

  • Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies worldwide [1,2,3]

  • We investigated the cytotoxic effects of G47Δ on five human HCC cell lines and one immortalized human hepatic cell line

  • In vitro cytotoxicity To assess the susceptibility of human HCC cells and a hepatic immortalized cell line to oncolytic herpes simplex virus (HSV) G47Δ cytotoxicity, monolayers of the HepG2, Hep3B, SMMC7721, BEL-7404, and BEL-7405 human HCC cells and the HL-7702 human hepatic immortalized cell line were infected with G47Δ at low MOI’s (MOI = 0.01, MOI = 0.1)

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies worldwide [1,2,3]. It is more frequent among men than women, and the morbidity increases gradually with age. At least one of these etiological factors can be identified, either alone or in combination with another factor [6,7,8] Both HBV and HCV cause acute and chronic infections that are associated with over 80% of HCC cases worldwide, with most infected individuals remaining asymptomatic for many years [9,10]. Hepatocellular carcinoma (HCC) is amongst the most common and lethal cancers, especially in Third World countries. Subcutaneous models of HCC were established to evaluate the in vivo anti-tumor efficacy of G47Δ

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.