Abstract

In this study, a laboratory-scale vacuum membrane distillation (VMD) system coupled with microbubble aeration (MBA) was developed for the treatment of high-salinity brine containing organic matters. Herein, at the beginning, feedwater only containing model organics such as humic acid (HA), bovine serum albumin (BSA) and sodium alginate (SA) was utilized to investigate the organic-fouling behavior, results indicated that the permeate flux was not affected by a thin and loose contaminated layer deposited on the membrane surface. Furthermore, dissolved organics in the feed brine inhibited the occurrence of membrane wetting due to the existence of a compact and protective crystals/organic-fouling layer, which can prevent the intrusion of scaling ions into membrane substrates. Besides, organics in the feedwater have a high tendency to adsorb on the membrane surface based on molecular dynamics simulations, thus, forming an organic-fouling layer prior to inorganic scaling. Finally, the effect of MBA on fouling alleviation was evaluated in VMD system, nearly 50% of salt precipitation from fouled membrane was effectively removed with the introduction of MBA, which can be ascribed to a combination of mechanisms, including surface shear forces and electrostatic attractions induced by microbubbles, meanwhile, about 2.2% of the total energy was only consumed, when using MBA. Together, these results demonstrated that MBA was a promising approach to alleviate membrane fouling in VMD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.