Abstract
Phosphorus is a nonrenewable resource, and the recovery of phosphorus from wastewater containing high concentrations of phosphorus is of great importance. In this work, a novel method for highly efficient treatment of high-concentration phosphorus-containing wastewater (50 mg/L, 100 mg/L and 150 mg/L) with low energy consumption was developed by using the block waste foam concrete (FC) as a potential phosphorus recovery material. The results showed that acid leaching significantly improved the accumulation efficiency of phosphorus in calcium hydroxyphosphate (HAP) via accelerating the release of calcium in wastewater. The recovery rate of phosphorus could reach 99.0% under the pH value of 9.0 at 25 °C, using 2.0 g FC. It was also found that the microporous structure of the surface of FC provided the adsorption sites for phosphorus, resulting in the adsorption rate in different concentrations of phosphorus-containing wastewater up to 14.5%. It indicated that FC achieved the recovery of phosphorus from high-concentration phosphorus-containing wastewater by coupling HAP crystallization and physical adsorption to polyphosphorus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.