Abstract

<p style='text-indent:20px;'>Oncolytic viruses are genetically altered replication-competent vi-ruses which upon death of a cancer cell produce many new viruses that then infect neighboring tumor cells. A mathematical model for virotherapy of glioma is analyzed as a dynamical system for the case of constant viral infusions and TNF-<i>α</i> inhibitors. Aside from a tumor free equilibrium point, the system also has positive equilibrium point solutions. We investigate the number of equilibrium point solutions depending on the burst number, i.e., depending on the number of new viruses that are released from a dead cancer cell and then infect neighboring tumor cells. After a transcritical bifurcation with a positive equilibrium point solution, the tumor free equilibrium point becomes asymptotically stable and if the average viral load in the system lies above a threshold value related to the transcritical bifurcation parameter, the tumor size shrinks to zero exponentially. Other bifurcation events such as saddle-node and Hopf bifurcations are explored numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.