Abstract

Abstract Though ultra high molecular weight polyethylene (UHMWPE) fiber made of carbon and hydrogen has superior mechanical properties and effective cosmic shielding properties, it shows weak composite properties due to poor interfacial adhesion between UHMWPE fibers and polymer matrix. In this study, functionalized graphitic nanofibers (GNFs) were treated further using the sonication method. High-level sonication with a series of conditions was employed for the treatment of functionalized GNFs. submicron particle size analyzer and transmission electron microscope (TEM) were used to study effects on the length and morphology of treated nanofibers by sonication conditions. The sonication conditions were optimized for preparation of a nano-epoxy matrix containing well-dispersed, reactive, functionalized graphitic nanofibers. The adhesion ability of the nano-epoxy to UHMWPE fiber was investigated. Bundle fiber pullout specimens with single and double-ends were designed and prepared for study of the adhesion property of the nano-matrix with UHMWPE fiber. Test results showed that the nano-epoxy matrix could effectively improve interfacial adhesion property with UHMWPE fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.