Abstract
A full-scale jet biogas internal loop anaerobic fluidized bed (JBILAFB) reactor, which requires low energy input and allows enhanced mass transfer, was constructed for the treatment of food processing wastewater. This reactor has an active volume of 798 m(3) and can treat 33.3 m(3) wastewater per hour. After pre-treating the raw wastewater by settling, oil separating and coagulation-air floating processes, the reactor was operated with a relatively shorter start-up time (55 days). Samples for the influent and effluent of the JBILAFB reactor were taken and analyzed daily for the whole process including both the start-up and stable running periods. When the volumetric COD loading fluctuated in the range of 1.6-5.6 kg COD m(-3) day(-1), the COD removal efficiency, the volatile fatty acid(VFA)/alkalinity ratio, the maximum biogas production and the content of CH(4) in total biogas of the reactor were found to be 80.1 ± 5%, 0.2-0.5, 348.5 m(3 )day(-1) and 94.5 ± 2.5%, respectively. Furthermore, the scanning electron microscope (SEM) results showed that anaerobic granular sludge and microorganism particles with biofilm coexisted in the reactor, and that the bacteria mainly in bacilli and cocci were observed as predominant species. All the data demonstrated that the enhanced mass transfer for gas, liquid and solid phases was achieved, and that the formation of microorganism granules and the removal of inhibitors increased the stability of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.