Abstract

This study investigates the feasibility of a robust, low-cost tubular microfiltration ceramic membrane fabricated using a mixture of locally available Fuller's earth clay (FEC) and solid waste material, rice husk ash (RHA), to treat effluents generated by a local dairy and palm oil industries. Fabrication of the membrane was carried out by employing the extrusion method followed by sintering at a temperature of 850 °C. Raw materials were characterized using XRD, XRF, FTIR, TGA, and differential thermal analysis (DTA). The membrane that underwent sintering exhibits a 61% porosity level, 43.29 L/m2 h bar water permeability, 0.115 μm average pore size, and relatively good corrosion resistance. Further, the effect of different operating conditions, including pressure (1.03-2.41 bar) and cross-flow rate (30-150 Lph), on the microfiltration of both the wastewaters is studied. The membrane lowered the COD levels below the discharge limit (<200 mg/L) of the Central Pollution Control of India for both wastewaters. Finally, Hermia's fouling models were used to identify the fouling mechanism concerned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call