Abstract

The literature since Apollo contains exhaustive material on attitude filtering, usually treating the problem of two sensors, a combination of state measuring and inertial devices. More recently, it has become popular for a sole attitude determination device to be considered. This is especially the case for a star tracker given its unbiased stellar measurement and recent improvements in optical sensor performance. The state device indirectly estimates the attitude rate using a known dynamic model. In estimation theory, two main attitude filtering approaches are classified, the additive and the multiplicative. Each refers to the nature of the quaternion update in the filter. In this article, these two techniques are implemented for the case of a sole star tracker, using simulated and real night sky image data. Both sets of results are presented and compared with each other, with a baseline established through a basic linear least square estimate. The state approach is more accurate and precise for measuring angular velocity than using the error-based filter. However, no discernible difference is observed between each technique for determining pointing. These results are important not only for sole device attitude determination systems, but also for space situational awareness object localisation, where attitude and rate estimate accuracy are highly important.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call