Abstract
BackgroundT cell activation induces ER stress and upregulates Inositol Requiring Enzyme 1 alpha (IRE1α), an activator of the unfolded protein response (UPR) pathway. Inhibition of IRE1α RNase activity in activated CD4+ splenocytes from naïve mice, via treatment of the cells with the commercially available drug 4μ8c upon activation, results in the reduction of the secretion of proteins IL-5, IL-4, and IL-13. Prior to this work, it was unknown if 4μ8c could inhibit TH2 cytokines in established TH2 cells, cells that are crucial in promoting disease in severe asthma.ResultsTreatment of a mouse T helper (TH)2 cell line and differentiated human TH2 cells with 4μ8c resulted in inhibition of IL-5, but not IL-4, as measured by ELISA. The reduced cytokine expression was not due to differences in mRNA stability or mRNA levels; it appears to be due to a defect in secretion, as the cells produce cytokines IL-5 as measured by flow cytometry and western blot.ConclusionThese data suggest that the inhibition of IL-5 was due to post-translational processes. IL-5 promotes chronic, inflammatory asthma, and 4μ8c blocks its expression in T cells in vitro. Future studies will determine if 4μ8c treatment can ameliorate the effects of the cytokine IL-5 in a disease model.
Highlights
T cell activation induces endoplasmic reticulum (ER) stress and upregulates Inositol Requiring Enzyme 1 alpha (IRE1α), an activator of the unfolded protein response (UPR) pathway
The UPR is comprised of three conserved pathways that are named after the following initiating molecules: protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 alpha (IRE1α)
The concentration of 4μ8c used in these experiments was determined by treating cells with varying concentrations of the inhibitor and measuring cytokine secretion via ELISA and determining the number of cells that were alive after treatment (Additional file 1: Figure S1)
Summary
T cell activation induces ER stress and upregulates Inositol Requiring Enzyme 1 alpha (IRE1α), an activator of the unfolded protein response (UPR) pathway. The endoplasmic reticulum (ER) of T cells is inundated with newly formed proteins that must be folded and exported to appropriate places in the cell. Failure of proteins to fold correctly leads to aggregates of misfolded proteins that induce stress in the ER. If this stress is not resolved, the cells die via apoptosis. The UPR is comprised of three conserved pathways that are named after the following initiating molecules: protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 alpha (IRE1α).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.