Abstract

The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g−1 (CO2) and 545 m² g−1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g−1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98 % (using a dosage of 10 g L−1) in the treatment of industrial effluents containing 2-chlorophenol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.