Abstract

Waste water treatments are the major problem for the environment issue. Especially when it is related to toxic chemical this is used by industry. Different methods are adopted but there low efficiency is found for the secondary treatment of waste water. Now day advance technology membrane biotechnologies are introduced to the waste water. Highly polluting industrial wastewaters are preferably treated in an anaerobic reactor due to the high level of COD, potential for energy generation and low surplus sludge production. However in practical applications, anaerobic treatment suffers from the low growth rate of the microorganisms, a low settling rate, process instabilities and the need for post treatment of the noxious anaerobic effluent which often contains ammonium ion (NH4+) and hydrogen sulfide (HS−). In most applications, despite the efficiency of the anaerobic process is high, complete stabilization of the organic matter is impossible anaerobically due to the high organic strength of the wastewater. The final effluent produced by the anaerobic treatment contains solubilized organic matter. This is suitable for aerobic treatment, indicating the potential of using anaerobic–aerobic systems and subsequent post treatment using aerobic treatment is required to meet the effluent discharge standard. Phanerochaete chrysosporium immobilized on different support materials, such as polyurethane foam (PUF) and scouring web (SW), in shake cultures, was able to decolourize efficiently the textile industry effluent in a long-term repeated-batch operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call