Abstract

An alternative to land spreading of manure effluents is to mass-culture algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to determine how the fatty acid (FA) content and composition of algae respond to changes in the type of manure, manure loading rate, and to whether the algae was grown with supplemental carbon dioxide. Algal biomass was harvested weekly from indoor laboratory-scale algal turf scrubber (ATS) units using different loading rates of raw and anaerobically digested dairy manure effluents and raw swine manure effluent. Manure loading rates corresponded to N loading rates of 0.2 to 1.3 g TN m �2 day �1 for raw swine manure effluent and 0.3 to 2.3 g TN m �2 day �1 for dairy manure effluents. In addition, algal biomass was harvested from outdoor pilot-scale ATS units using different loading rates of raw and anaerobically digested dairy manure effluents. Both indoor and outdoor units were dominated by Rhizoclonium sp. FA content values of the algal biomass ranged from 0.6 to 1.5% of dry weight and showed no consistent relationship to loading rate, type of manure, or to whether supplemental carbon dioxide was added to the systems. FA composition was remarkably consistent among samples and >90% of the FA content consisted of 14:0, 16:0, 16:1ω7, 16:1ω9, 18:0, 18:1ω9, 18:2 ω6, and 18:3ω3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call