Abstract
The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m−2 s−1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.