Abstract

The aspiration of gastric acid causes pulmonary edema and hypoxemia. One approach to the management of this syndrome is to raise cardiac output (Qt) and O2 delivery (QO2) to ensure tissue oxygenation (VO2) at the risk of increasing the edema. Another approach reduces the edema by reducing pulmonary microvascular pressure (Pmv) at the risk of reducing QO2 and VO2. We compared these approaches in 24 anesthetized, ventilated dogs with pulmonary wedge pressure (Ppw), a clinical approximation of Pmv, of 12.5 mmHg. Before and again 1 h after endobronchial instillation of 0.1 N HCl, we measured Qt, QO2, VO2, venous admixture, and in vivo extravascular lung liquid. The dogs were then randomly divided into four equal groups: 1) 12.5 mmHg Ppw, high Qt; 2) 7.5 mmHg Ppw, intermediate Qt; 3) 4.5 mmHg Ppw, low Qt; and 4) 4.5 mmHg Ppw plus dopamine, intermediate Qt. Measured values were followed for 4 more h, after which the lungs were excised to compare wet weight-to-body weight ratios (W/B). When plasmapheresis reduced Ppw at 1 h, edema did not increase further and W/B of groups 2 (21 +/- 3), 3 (18 +/- 3), and 4 (22 +/- 3) were significantly less than in group 1 (27 +/- 3) (P less than 0.001). Although Qt decreased with Ppw, increased hematocrit and reduced venous admixture maintained QO2 in group 2 but not in group 3. In group 4 an intermediate Qt maintained QO2 even at 4.5 mmHg Ppw but edema increased to the group 2 level presumably because Pmv rose with Qt on dopamine. VO2 remained constant over time in each group. These data demonstrate that canine HCl-induced pulmonary edema, measured in vivo or gravimetrically, is very sensitive to reductions in Pmv. Moreover, the lowest Pmv (and QO2) was well tolerated because an O2 supply dependency of VO2 was not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.