Abstract

The pilot plant fed by a 600-Nm3 h−1 waste air flow rate consisted of a water scrubbing pre-treatment followed by a biotrickling filter and a biofilter, in series. The growth of selected bacterial and fungal consortia was promoted through the biotrickling filter and biofilter. Total BTEX levels were detected in a raw waste air stream at an average concentration of 39.07 mg Nm−3. The whole treatment achieved an average of 96.1 % removal efficiency. This performance led to very low average concentrations of individual BTEX in the final air effluent: 1.07 mg Nm−3 for benzene, 0.16 mg Nm−3 for toluene, 0.22 mg Nm−3 for ethylbenzene and 0.07 mg Nm−3 for xylene (mix). The performance and stability of both biotrickling filter and biofilter confirmed the effectiveness of the treatment in achieving low concentrations of individual BTEX in the final air effluent, which fully comply with the most stringent toxicological standard and threshold odor concentrations, for the protection of workers and local residents. This result was possible by the complementary and synergistic action of the bacterial and fungal consortia in degrading BTEX.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call