Abstract

BackgroundEvaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c.MethodsThe activity of 12 ozonides, artemisinin, and two semisynthetic artemisinins were tested for activity against two neuroblastoma cell-lines (BE (2)-c and IMR-32) and the Ewing’s Sarcoma cell line A673 in an MTT viability assay. Time course data indicated that peak effect was seen 18 h after the start of treatment thus 18 h pre-treatment was used for all subsequent experiments. The most active ozonide (OZ513) was assessed in a propidium iodide cell cycle flow cytometry analysis which measured cell cycle transit and apoptosis. Metabolic effects of OZ513 in BE (2)-c cells was evaluated. Western blots for the apoptotic proteins cleaved capase-3 and cleaved PARP, the highly amplified oncogene MYCN, and the cell cycle regulator CyclinD1, were performed. These in-vitro experiments were followed by an in-vivo experiment in which NOD-scid gamma immunodeficient mice were injected subcutaneously with 1 × 106 BE (2)-c cells followed by immediate treatment with 50–100 mg/kg/day doses of OZ513 administered IP three times per week out to 23 days after injection of tumor. Incidence of tumor development, time to tumor development, and rate of tumor growth were assessed in DMSO treated controls (N = 6), and OZ513 treated mice (N = 5).ResultsIt was confirmed that five commonly used chemotherapy drugs had no cytotoxic activity in BE (2)-c cells. Six of 12 ozonides tested were active in-vitro at concentrations achievable in vivo with OZ513 being most active (IC50 = 0.5 mcg/ml). OZ513 activity was confirmed in IMR-32 and A673 cells. The Ao peak on cell-cycle analysis was increased after treatment with OZ513 in a concentration dependent fashion which when coupled with results from western blot analysis which showed an increase in cleaved capase-3 and cleaved PARP supported an increase in apoptosis. There was a concentration dependent decline in the MYCN and a cyclinD1 protein indicative of anti-proliferative activity and cell cycle disruption. OXPHOS metabolism was unaffected by OZ513 treatment while glycolysis was increased. There was a significant delay in time to tumor development in mice treated with OZ513 and a decline in the rate of tumor growth.ConclusionsThe antimalarial ozonide OZ513 has effective in-vitro and in-vivo activity against a pleiotropic drug resistant neuroblastoma cell-line. Treatment with OZ513 increased apoptotic markers and glycolysis with a decline in the MYCN oncogene and the cell cycle regulator cyclinD1. These effects suggest adaptation to cellular stress by mechanism which remain unclear.

Highlights

  • Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c

  • In the following study we investigated the antitumor effect of ozonide antimalarials in a chemoresistant neuroblastoma cell line, BE (2)-c

  • The activity of the ozonide antimalarials were confirmed in a non-neuroblastoma cell line in addition to the two neuroblastoma cells line, type I Ewing’s Sarcoma (A673; ATCC: CRL-1598)

Read more

Summary

Introduction

Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c. Neuroblastoma is a rare childhood tumor with about 700 new cases per year in North America [1] It is a biologically diverse tumor with clinical course and prognosis dependent on age at diagnosis, histology, and molecular pathway characteristics. Our group has recently demonstrated the value of inhibiting sonic hedgehog pathways using vismodegib and topotecan in neuroblastoma invitro and in-vivo [4]. While these new therapies are promising advances in the treatment of high-risk neuroblastoma, more than half of high-risk patients die of therapy resistant disease. Examples of processes that have a distinct cancer phenotype which may be modified to inhibit tumor growth, in minimal residual disease, include cellular metabolism, autophagy, DNA repair and cell cycle regulation [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.