Abstract

Despite advances in treatment, asthma continues to be a significant health and economic burden. Although asthma cannot be cured, several drugs, including beta2 agonists, corticosteroids, and leukotriene (LT) modifiers, are well tolerated and effective in minimizing symptoms, improving lung function, and preventing exacerbations. However, inter-patient variability in response to asthma drugs limits their effectiveness. It has been estimated that 60-80% of this inter-patient variability may be attributable to genetic variation. LT modifiers, in particular, have been associated with heterogeneity in response. These drugs exert their action by inhibiting the activity of cysteinyl leukotrienes (CysLTs), which are potent bronchoconstrictors and pro-inflammatory agents. Two classes of LT modifiers are 5-lipoxygenase (ALOX5) inhibitors (zileuton) and leukotriene receptor antagonists (LTRAs) [montelukast, pranlukast, and zarfirlukast]. LT modifiers can be used as alternatives to low-dose inhaled corticosteroids (ICS) in mild persistent asthma, as add-on therapy to low- to medium-dose ICS in moderate persistent asthma, and as add-on to high-dose ICS and a long-acting ss2 agonist in severe persistent asthma. At least six genes encode key proteins in the LT pathway: arachidonate 5-lipoxygenase (ALOX5), ALOX5 activating protein (ALOX5AP [FLAP]), leukotriene A4 hydrolase (LTA4H), LTC4 synthase (LTC4S), the ATP-binding cassette family member ABCC1 (multidrug resistance protein 1 [MRP1]), and cysteinyl leukotriene receptor 1 (CYSLTR1). Studies have reported that genetic variation in ALOX5, LTA4H, LTC4S, and ABCC1 influences response to LT modifiers. Plasma concentrations of LTRAs vary considerably among patients. Physio-chemical characteristics make it likely that membrane efflux and uptake transporters mediate the absorption of LTRAs into the systemic circulation following oral administration. Genes that encode efflux and uptake transport proteins harbor many variants that could influence the pharmacokinetics, and particularly the bioavailability, of LTRAs, and could contribute to heterogeneity in response. In the future, large, well designed clinical trials studying the pharmacogenetics of LT modifiers in diverse populations are warranted to determine whether a genetic signature can be developed that will accurately predict which patients will respond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.