Abstract

We propose the sharp identifiable bounds of the potential outcome distributions using panel data. We allow for the possibility that statistical randomization of treatment assignments is not achieved until unobserved heterogeneity is properly controlled for. We use certain stationarity assumptions to obtain the sharp bounds. Our approach allows for dynamic treatment decisions, where the current treatment decisions may depend on the past treatments or the past observed outcomes. As an empirical illustration, we study the effect of smoking during pregnancy on infant birthweight. We find that for the group of switchers the infant birthweight of a smoking mother is first-order stochastically dominated by that of a nonsmoking mother.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.