Abstract

Objectives: Deficits in homotopic connectivity have been implicated in schizophrenia. However, alterations in homotopic connectivity associated with antipsychotic treatments in schizophrenia remain unclear due to lack of longitudinal studies.Methods: Seventeen drug-free patients with recurrent schizophrenia and 24 healthy controls underwent resting-state functional magnetic resonance imaging scans. The patients were scanned at three time points (baseline, at 6 weeks of treatment, and at 6 months of treatment). Voxel-mirrored homotopic connectivity (VMHC) was applied to analyse the imaging data to examine alterations in VMHC associated with antipsychotic treatment.Results: The results showed that patients with schizophrenia exhibited decreased VMHC in the default-mode network (such as the precuneus and inferior parietal lobule) and the motor and sensory processing regions (such as the lingual gyrus, fusiform gyrus and cerebellum lobule VI), which could be normalised or denormalised by olanzapine treatment. In addition, negative correlations were found between decreased VMHC and symptom severity in the patients at baseline.Conclusions: The present study shows that olanzapine treatment can normalise or denormalise decreased homotopic connectivity in schizophrenia. The findings also provide a new perspective to understand treatment effects of antipsychotic drugs on homotopic connectivity in schizophrenia that contribute to the disconnection hypothesis of this disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.