Abstract

The use of green methods to treat industrial waste and waste reuse has become a key environmental issue. In order to achieve this goal, this study treated waste phosphogypsum (PG) and produced modified PG biochar to adsorb and remove phosphorus from PG leachate, so that the PG pollution problem was controlled. In this study, PG was modified with sodium carbonate (Na2CO3) to prepare a modified PG biochar that was used for the removal of phosphorus-containing wastewater. An X-ray diffraction (XRD) analysis of the modified PG revealed that the main component was calcium carbonate (CaCO3), and a suitable amount of modified PG could load calcium oxide (CaO) onto the biochar and improve its physical properties. The experimental results showed that the modified PG biochar had a maximum phosphorus adsorption capacity of 132mg/g. A further investigation of the mechanism of adsorption revealed the importance of electrostatic attraction and chemical precipitation, and it was found that the CaO in the modified PG biochar could effectively facilitate the conversion of phosphate to hydroxylapatite (Ca5(PO4)3OH) in water. The phosphorus removal rate from leachate obtained from a landfill containing PG was 99.38% for a specific dose of the modified PG biochar. In this study, a PG pollution control technology was developed to realize the goal of replacing waste with waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.