Abstract
One of the prevailing ideas in the literature on microarray data analysis is to pool the expression measures across genes and treat them as a sample drawn from some distribution. Several universal laws were proposed to analytically describe this distribution. This idea raises a number of concerns. The expression levels of genes are not identically distributed random variables so that treating them as a sample amounts to sampling from a mixture of equally weighted distributions, each being associated with a different gene. The expression levels of different genes are heavily dependent random variables so that the law of large numbers and statistical goodness-of-fit tests are normally inapplicable to this kind of data. This dependence represents a very serious pitfall in microarray data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistical Applications in Genetics and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.