Abstract

Biodegradable cationic micelles show promise for applications in gene delivery. In this article, we used DOTAP to modify monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL, MP) micelles in one step, creating novel cationic self-assembled DOTAP and MPEG-PCL hybrid micelles (DMP). These micelles had a mean particle size of 46 ± 5.6 nm and a zeta potential of 41.8 ± 0.5 mV, and had the capacity to bind DNA. Compared with PEI25K (the gold standard), DMP micelles had higher transfection efficiency and lower cytotoxicity. Moreover, we used DMP to deliver the Survivin-T34A gene (S-T34A, a suicide gene) to treat colon cancer. DMP delivered the Survivin-T34A gene (DMP/S-T34A) and could induce apoptosis in cancer cells, resulting in inhibition of the growth of C-26 colon cancer cells in vitro. An in vivo study indicated that intraperitoneal administration of DMP micelles delivered the Survivin-T34A gene and efficiently inhibited the growth of abdominal metastatic C-26 colon cancer and the malignant ascites. These data suggest that DMP may be a novel gene carrier, and its delivery of the S-T34A gene may have promising applications in the treatment of colon cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.