Abstract
A 2‐year three‐phase study into methods for treatment of mixed inorganic and organic arsenic species to drinking water levels was conducted at a former pesticide facility in Houston, Tex. The species present include monomethylarsinic acid, dimethylarsinic acid, arsenate, and arsenite. Phase One studies reported here included the evaluation of four adsorbents using bottle roll and column flow through techniques, oxidation through the application of Fenton's reagent followed by coprecipitation, coprecipitation without oxidation, and ultraviolet (UV)/ozone tests. The four adsorbents tested were activated carbon, activated alumina, ferrous sulfide, and a strongly basic ion exchange resin. All adsorbents removed some arsenic, but none except ferrous sulfide was sufficiently effective to warrant follow‐up studies. Two small ferrous sulfide column tests, run under different conditions, removed arsenic but not to the levels and loading capacities needed to make this method practical. Organic compound destruction was tested using Fenton's reagent (a mixture of hydrogen peroxide and ferrous iron) before coprecipitation. Arsenic was reduced to 170 ppb in the treated liquor. Coprecipitation without oxidative pretreatment produced a liquor containing 260 ppb arsenic. A two‐stage Fenton‐type coprecipitation procedure produced a supernatant containing 110 ppb total arsenic. Preliminary tests with a second‐stage oxidative process, using ozone and UV radiation, showed approximately 80% destruction of an organic‐arsenic surrogate (cacodylic acid) in 1 hour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.