Abstract

Several studies reveal that the beneficial effects of exercise interventions are dependent on the progression of Alzheimer’s disease (AD). We have previously shown that long-term treadmill exercise begun before the onset of β-amyloid (Aβ) pathology prevents the deficits of cognition and long-term potentiation (LTP) in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice (8months of age) paralleled by the reduction of soluble Aβ levels and Aβ deposition in the hippocampus. In the present study, treadmill exercise was initiated at a developed Aβ deposition stage in order to further investigate whether or not treadmill exercise in this phase can delay the progression of AD in aged APP/PS1 mice (17months of age). Our results show that 5-month treadmill exercise ameliorates the impairment of spatial learning and memory with age paralleled by synaptic plasticity enhancement in aged APP/PS1 mice. In addition, exercise-induced enhancement of synaptic plasticity was accompanied by a significant reduction of soluble Aβ levels rather than Aβ plaque deposition. Therefore, the investigation demonstrates that long-term treadmill exercise has beneficial effects on cognition and synaptic plasticity even when the brain has developed Aβ deposition, and changes in soluble Aβ levels rather than Aβ plaque deposition may contribute to exercise-induced benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call