Abstract

The structure of fishnet knots has been simplified in previous studies to facilitate the construction of numerical equations of the fishnet structure. This leads to errors in the dynamic analysis of the trawl mesh structure with water flow. In this study, the finite element method was used to analyze the interaction of the trawl mesh structure with the solid object in a dynamic explicit environment. At the same time, design variables were optimized through impact assessment and the displacement of grid cells. The results show that the polyamide (PA) material, a 0.4 mm cross-section, and a 25 mm mesh size are the optimal choices. When the displacement speed of the solid body increased, the displacement and collision values of the mesh structure tended to increase gradually along the quadratic curve. Confirmation tests performed on the tensile tester machine showed a good load-carrying capacity of up to 1280 MPa for trawl mesh structures using the PA material. The characteristic curve for the stress of the trawl mesh structure is shown through the higher-order curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call