Abstract

The nucleation-growth process is a crucial component of crystallization. While previous theoretical models have focused on nucleation events and postnucleation growth, such as the classical nucleation theory and Lifshitz-Slyozov-Wagner model, recent advancements in experiments and simulations have highlighted the inability of classical models to explain the transient dynamics during the early development of nanocrystals. To address these shortcomings, we present a model that describes the nucleation-growth dynamics of individual nanocrystals as a series of reversible chain reactions, with the free energy landscape extended to include activation-adsorption-relaxation reaction pathways. By using the Monte Carlo method based on the transition state theory, we simulate the crystallization dynamics. We derive a Fokker-Planck formalism from the master equation to describe the nucleation-growth process as a heterogeneous random walk on the extended free energy landscape with activated states. Our results reveal the transient quasiequilibrium of the prenucleation stage before nucleation starts, and we identify a postnucleation crossover regime where the dynamic growth exponents asymptotically converge towards classical limits. Additionally, we generalize the power laws to address the dimension and scale effects for the growth of large crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call