Abstract
The introduction of three-dimensional (3D) architecture to functional materials allows for the addition of unique characteristics such as special deformation patterns, negative Poison's ratio, negative thermal expansion, controlled biological interactions, and mass transport properties. It also aids in bridging the dimensional gap between layer-by-layer (LBL) assembled nanocomposites and macroscale applications while retaining the advantages of their nanoscale organization. Fabrication of 3D microscale features by traditional techniques are often restricted to a limited variety of materials and do not include hybrid organic-inorganic nanocomposites. This work describes a new method to synthesize macroscale materials with hierarchically controlled architecture by using LBL deposition in the voids of hexagonally packed arrays of uniform microspheres and can be potentially extended to a large variety of materials. Establishing systematic techniques to produce materials with hierarchical architecture involving nano-, micro-, and potentially millimeter scale features with fairly independent control at all levels, allows for the investigation of structural influences on material properties and for the development of new practical applications due to the unusual combinations of properties that can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.