Abstract

This paper uses the Noether symmetry approach to examine the viable and stable traversable wormhole solutions in the framework of the f(R,T2) theory, where R is the Ricci scalar and T2=TμνTμν is the self-contraction of the stress–energy tensor. For this purpose, we consider a specific model of this modified theory to obtain the exact solutions of the Noether equations. Further, we formulate the generators of the Noether symmetry and first integrals of motion. We analyze the presence of viable and stable traversable wormhole solutions corresponding to different redshift functions. In order to determine whether this theory provides physically viable and stable wormhole geometry or not, we check the graphical behavior of the null energy constraint, causality condition and adiabatic index for an effective stress–energy tensor. It is found that viable and stable traversable wormhole solutions exist in this modified theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.